EMC TEST REPORT
For
Shenzhen Eigate Technology Co., Ltd.

<table>
<thead>
<tr>
<th>Product Name:</th>
<th>E-cigarette Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trademark:</td>
<td>N/A</td>
</tr>
<tr>
<td>Model Number:</td>
<td>aspir CF G-Power</td>
</tr>
<tr>
<td></td>
<td>aspir CF Passthrough</td>
</tr>
<tr>
<td></td>
<td>Cell Type: 650mah/900mah/1000mah/1100mah/1300mah/1600mah</td>
</tr>
<tr>
<td>Prepared For:</td>
<td>Shenzhen Eigate Technology Co., Ltd.</td>
</tr>
<tr>
<td>Address:</td>
<td>2F of Building 19 of Shayi Beifang Yongfa Technology Park, Gonghe, Shajing Street, Bao’an District of Shenzhen City.</td>
</tr>
<tr>
<td>Prepared By:</td>
<td>Shenzhen BCTC Technology Co., Ltd.</td>
</tr>
<tr>
<td>Address:</td>
<td>A. Floor 3, 44 Building, Tanglang Industrial Park B, Taoyuan Street, Nanshan District, Shenzhen, China</td>
</tr>
<tr>
<td>Test Date:</td>
<td>Jun. 16- Jun. 23, 2014</td>
</tr>
<tr>
<td>Date of Report:</td>
<td>Jun. 23, 2014</td>
</tr>
<tr>
<td>Report No.:</td>
<td>BCTC-14064761</td>
</tr>
</tbody>
</table>
Table of Content

Test Report Declaration ... 6

1. GENERAL INFORMATION .. 6
 1.1 Description of Device (EUT) .. 6
 1.2 Test Facility ... 6
 1.3 Tested System Details ... 6
 1.4 Test Uncertainty .. 7

2. TEST INSTRUMENT USED .. 8
 2.1 For Conducted Emission Test ... 8
 2.2 For Radiated Emission Test ... 8
 2.3 For Harmonic & Flicker Test .. 9
 2.4 For Electrostatic Discharge Immunity Test 9
 2.5 For RF Field Strength Susceptibility Test 10
 2.6 For Electrical Fast Transient /Burst Immunity Test 10
 2.7 For Surge Test .. 10
 2.8 For Injected Currents Susceptibility Test 11
 2.9 For Magnetic Field Immunity Test ... 11
 2.10 For Voltage Dips Interruptions Test 11

3. POWER LINE CONDUCTED EMISSION TEST 12
 3.1 Block Diagram of Test Setup ... 12
 3.2 Test Standard ... 12
 3.3 Power Line Conducted Emission Limit 12
 3.4 EUT Configuration on Test .. 12
 3.5 Operating Condition of EUT ... 13
 3.6 Test Procedure ... 13
 3.7 Test Result ... 13

4. RADIATION EMISSION TEST .. 14
 4.1 Block Diagram of Test Setup ... 14
 4.2 Test Standard ... 14
 4.3 Radiation Limit ... 15
 4.4 EUT Configuration on Test .. 15
 4.5 Operating Condition of EUT ... 15
 4.6 Test Procedure ... 15
 4.7 Test Result ... 15

5. HARMONIC CURRENT EMISSION TEST 17
 5.1 Block Diagram of Test Setup ... 17
 5.2 Test Standard ... 17
 5.3 Operating Condition of EUT ... 17
 5.4 Test Procedure ... 17
 5.5 Test Results ... 17
12.7 Test Results ..35

13. VOLTAGE DIPS AND INTERRUPTIONS TEST ...36
 13.1 Block Diagram of EUT Test Setup..36
 13.2 Test Standard ..36
 13.3 Severity Levels and Performance Criterion ..36
 13.4 EUT Configuration on Test ..37
 13.5 Operating Condition of EUT ..37
 13.6 Test Procedure ..37
 13.7 Test Result ...37

14. EUT PHOTOGRAPHS ...38

15. EUT TEST PHOTOGRAPHS ..41
TEST REPORT DECLARATION

Applicant: Shenzhen Eigate Technology Co., Ltd.

: 2F of Building 19 of Shayi Beifang Yongfa Technology Park, Gonghe, Shajing Street, Bao’ an District of Shenzhen City.

Manufacturer: Shenzhen Eigate Technology Co., Ltd.

: 2F of Building 19 of Shayi Beifang Yongfa Technology Park, Gonghe, Shajing Street, Bao’ an District of Shenzhen City.

EUT: E-cigarette Battery

Model Number: aspire CF G-Power

Rating(s): DC4.2V

Test Procedure Used:

EMI: EN 55022 : 2010

EMS: EN 55024 : 2010

The device described above is tested by Shenzhen BCTC Technology Co., Ltd. to determine the maximum emission levels emanating from the device, the severe levels which the device can endure and EUT is performance criterion. The test results are contained in this test report. Shenzhen BCTC Technology Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests. Also, this report shows that the EUT is technically compliant with the EN55022, EN61000-3-2, EN61000-3-3 and EN55024.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen BCTC Technology Co., Ltd.

Date of Test: Jun. 16- Jun. 23, 2014

Prepared by (Engineer):

Eric Yang

Reviewer (Quality Manager):

Sophie Liu

Approved & Authorized Signer (Manager):

Casey Wang
1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : E-cigarette Battery
Model Number : aspire CF G-Power
Power Supply : DC4.2V
Applicant : Shenzhen Eigate Technology Co., Ltd.
Address : 2F of Building 19 of Shayi Beifang Yongfa Technology Park, Gonghe, Shajing Street, Bao’an District of Shenzhen City.
Manufacturer : Shenzhen Eigate Technology Co., Ltd.
Address : 2F of Building 19 of Shayi Beifang Yongfa Technology Park, Gonghe, Shajing Street, Bao’an District of Shenzhen City.

Date of report : Jun. 23, 2014
Date of Test : Jun. 16- Jun. 23, 2014

1.2 Test Facility

Site Description
Name of Firm : Shenzhen BCTC Technology Co., Ltd.
Site Location : A. Floor 3, 44 Building, Tanglang Industrial Park B, Taoyuan Street, Nanshan District, Shenzhen, China

1.3 Tested System Details

Host Personal Computer : HP
M/N : A1580TW
Monitor : SONY
M/N : MNT1

Printer : EPSON STYLUS
M/N : P320A
Keyboard (USB) : Genuine
M/N : N/A

Modem : ACEEX
M/N : DM-1414
Mouse : DETROIS
M/N : CM309
1.4 Test Uncertainty

Conducted Emission Uncertainty : ± 2.66dB

Radiated Emission Uncertainty : ± 4.26dB
2. TEST INSTRUMENT USED

2.1 For Conducted Emission Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>

2.2 For Radiated Emission Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>
2.3 For Harmonic & Flicker Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>

2.4 For Electrostatic Discharge Immunity Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>

2.5 For RF Field Strength Susceptibility Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifier</td>
<td>A&R</td>
<td>500A100</td>
<td>17034</td>
<td>NCR</td>
<td>NCR</td>
</tr>
<tr>
<td>Amplifier</td>
<td>A&R</td>
<td>100W/1000M1</td>
<td>17028</td>
<td>NCR</td>
<td>NCR</td>
</tr>
<tr>
<td>Antenna</td>
<td>EMCO</td>
<td>3108</td>
<td>9507-2534</td>
<td>NCR</td>
<td>NCR</td>
</tr>
<tr>
<td>Log-periodic Antenna</td>
<td>A&R</td>
<td>AT1080</td>
<td>16812</td>
<td>NCR</td>
<td>NCR</td>
</tr>
</tbody>
</table>
2.6 For Electrical Fast Transient /Burst Immunity Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>

2.7 For Surge Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>

2.8 For Injected Currents Susceptibility Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>
2.9 For Magnetic Field Immunity Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>

2.10 For Voltage Dips Interruptions Test

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
<th>Model#</th>
<th>Serial#</th>
<th>Last Cal.</th>
<th>Next Cal.</th>
</tr>
</thead>
</table>
3. POWER LINE CONDUCTED EMISSION TEST

3.1 Block Diagram of Test Setup

3.2 Test Standard
EN 55022 : 2010

3.3 Power Line Conducted Emission Limit

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Limits dB(µV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>Quasi-peak Level</td>
</tr>
<tr>
<td>0.15 ~ 0.50</td>
<td>66 ~ 56*</td>
</tr>
<tr>
<td>0.50 ~ 5.00</td>
<td>56</td>
</tr>
<tr>
<td>5.00 ~ 30.00</td>
<td>60</td>
</tr>
</tbody>
</table>

Notes: 1. *Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.

3.4 EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN55022 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.4.1 **E-cigarette Battery** (EUT)

Model Number : **aspire CF G-Power**

Manufacturer : **Shenzhen Eigate Technology Co., Ltd.**
3.5 Operating Condition of EUT

3.5.1 Setup the EUT and simulators as shown in Section 3.1.
3.5.2 Turn on the power of all equipments.
3.5.3 Let the EUT work in test modes (On) and test it.

3.6 Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the EN55022 regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESHS30) is set at 10KHz.

The frequency range from 150 KHz to 30 MHz is investigated.

3.7 Test Result

N/A
4. RADIATION EMISSION TEST

4.1 Block Diagram of Test Setup

4.1.1. Block Diagram of EUT Test Setup

4.1.2. Anechoic Chamber Setup Diagram

4.2 Test Standard

EN 55022 : 2010
4.3 Radiation Limit

<table>
<thead>
<tr>
<th>Frequency MHz</th>
<th>Distance (Meters)</th>
<th>Field Strengths Limits dB(μV)/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 ~ 230</td>
<td>3</td>
<td>40.0</td>
</tr>
<tr>
<td>230 ~ 1000</td>
<td>3</td>
<td>47.0</td>
</tr>
</tbody>
</table>

Remark:
(1) Emission level (dB(μV)/m) = 20 log Emission level (μV/m)
(2) The smaller limit shall apply at the cross point between two frequency bands.
(3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

4.4 EUT Configuration on Test
The EN55022 regulations test method must be used to find the maximum emission during radiated emission test.
The configuration of EUT is the same as used in conducted emission test.
Please refer to Section 2.2.

4.5 Operating Condition of EUT
Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

4.6 Test Procedure
The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN55022 on radiated emission test.
The bandwidth setting on the field strength meter (R&S Test Receiver ESHS30) is set at 120KHz.
The frequency range from 30MHz to 1000MHz is checked.

4.7 Test Result
PASSED
Please refer to the following page.
5. HARMONIC CURRENT EMISSION TEST

5.1 Block Diagram of Test Setup

![Block Diagram](EUT: E-cigarette Battery)

5.2 Test Standard

5.3 Operating Condition of EUT

5.3.1 Setup the EUT as shown in Section 5.1.
5.3.2 Turn on the power of all equipments.
5.3.3 Let the EUT work in test mode (ON) and test it.

5.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

5.5 Test Results

N/A
6. VOLTAGE FLUCTUATIONS & FLICKER TEST

6.1 Block Diagram of Test Setup
Same as Section 5.1..

6.2 Test Standard
EN 61000-3-3:2013

6.3 Operating Condition of EUT
Same as Section 5.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

Flicker Test Limit

<table>
<thead>
<tr>
<th>Test items</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pst</td>
<td>1.0</td>
</tr>
<tr>
<td>dc</td>
<td>3.3%</td>
</tr>
<tr>
<td>dmax</td>
<td>4.0%</td>
</tr>
<tr>
<td>dt</td>
<td>Not exceed 3.3% for 500ms</td>
</tr>
</tbody>
</table>

6.4 Test Results
N/A
7. ELECTROSTATIC DISCHARGE IMMUNITY TEST

7.1 Block Diagram of Test Setup

7.1.1. Block Diagram of the EUT and the simulators

7.1.2. Test Setup

7.2 Test Standard
EN 55024:2010, EN 61000-4-2:2009

Severity Level: 3 / Air Discharge: ±8KV
Level: 2 / Contact Discharge: ±4KV

7.3 Severity Levels and Performance Criterion

7.3.1 Severity level

<table>
<thead>
<tr>
<th>Level</th>
<th>Test Voltage Contact Discharge (KV)</th>
<th>Test Voltage Air Discharge (KV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>±2</td>
<td>±2</td>
</tr>
<tr>
<td>2.</td>
<td>±4</td>
<td>±4</td>
</tr>
<tr>
<td>3.</td>
<td>±6</td>
<td>±8</td>
</tr>
<tr>
<td>4.</td>
<td>±8</td>
<td>±15</td>
</tr>
<tr>
<td>X</td>
<td>Special</td>
<td>Special</td>
</tr>
</tbody>
</table>

7.3.2 Performance criterion : A
A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

7.4 EUT Configuration

The following equipments are installed on Electrostatic Discharge Immunity test to meet EN 55024:2010, EN 61000-4-2:2009, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.4.

7.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 7.1.2.

7.6 Test Procedure

7.6.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

7.6.2 Contact Discharge:

All the procedure shall be same as Section 7.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
7.6.3 Indirect discharge for horizontal coupling plane
At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

7.6.4 Indirect discharge for vertical coupling plane
At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are complete illuminated.

7.7 Test Results
PASSED
Please refer to the following page.
Electrostatic Discharge Test Results

Shenzhen BCTC Technology Co., Ltd.

<table>
<thead>
<tr>
<th>Applicant</th>
<th>Shenzhen Eigate Technology Co., Ltd.</th>
<th>Test Date</th>
<th>Jun. 23, 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUT</td>
<td>E-cigarette Battery</td>
<td>Temperature</td>
<td>25°C</td>
</tr>
<tr>
<td>M/N</td>
<td>aspire CF G-Power</td>
<td>Humidity</td>
<td>53%</td>
</tr>
<tr>
<td>Power Supply</td>
<td>DC4.2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test Engineer</td>
<td>Eric Yang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Discharge: ± 8KV
Contact Discharge: ± 4KV # For each point positive 25 times and negative 25 times discharge

<table>
<thead>
<tr>
<th>Test Points</th>
<th>Air Discharge</th>
<th>Contact Discharge</th>
<th>Performance Criterion</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others Slot of the</td>
<td>±8KV</td>
<td>N/A</td>
<td>A</td>
<td>PASSED</td>
</tr>
<tr>
<td>EUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVER</td>
<td>±2,4,8KV</td>
<td>N/A</td>
<td>A</td>
<td>PASSED</td>
</tr>
<tr>
<td>BUTTON</td>
<td>±2,4,8KV</td>
<td>N/A</td>
<td>A</td>
<td>PASSED</td>
</tr>
<tr>
<td>VCP</td>
<td>N/A</td>
<td>±4 KV</td>
<td>A</td>
<td>PASSED</td>
</tr>
<tr>
<td>HCP</td>
<td>N/A</td>
<td>±4 KV</td>
<td>A</td>
<td>PASSED</td>
</tr>
</tbody>
</table>
8. RF FIELD STRENGTH SUSCEPTIBILITY TEST

8.1 Block Diagram of Test Setup

8.1.1 Block Diagram of the EUT and the simulators

8.1.2 R/S Test Setup

8.2 Test Standard

Severity Level 2, 3V / m
8.3 Severity Levels and Performance Criterion

8.3.1. Severity level

<table>
<thead>
<tr>
<th>Level</th>
<th>Field Strength V/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
</tr>
<tr>
<td>X.</td>
<td>Special</td>
</tr>
</tbody>
</table>

8.3.2. Performance criterion: A

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

8.4 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.5 except the test setup replaced by Section 8.1.

8.5 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.
All the scanning conditions are as follows:

<table>
<thead>
<tr>
<th>Condition of Test</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fielded Strength</td>
<td>3 V/m (Severity Level 2)</td>
</tr>
<tr>
<td>2. Radiated Signal</td>
<td>Modulated</td>
</tr>
<tr>
<td>3. Scanning Frequency</td>
<td>80 – 1000 MHz</td>
</tr>
<tr>
<td>4. Dwell time of radiated</td>
<td>0.0015 decade/s</td>
</tr>
<tr>
<td>5. Waiting Time</td>
<td>1 Sec.</td>
</tr>
</tbody>
</table>

8.6 Test Results

PASSED

Please refer to the following page.
RF Field Strength Susceptibility Test Results

Shenzhen BCTC Technology Co., Ltd.

<table>
<thead>
<tr>
<th>Applicant: Shenzhen Eigate Technology Co., Ltd.</th>
<th>Test Date: Jun. 23, 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUT : E-cigarette Battery</td>
<td>Temperature : 25°C</td>
</tr>
<tr>
<td>M/N : aspire CF G-Power</td>
<td>Humidity : 53%</td>
</tr>
<tr>
<td>Field Strength: 3 V/m</td>
<td>Criterion: A</td>
</tr>
<tr>
<td>Power Supply: DC4.2V</td>
<td>Frequency Range: 80 MHz to 1000 MHz</td>
</tr>
<tr>
<td>Test Engineer: Eric Yang</td>
<td></td>
</tr>
<tr>
<td>Modulation: AM @ Pulse @none 1 KHz 80%</td>
<td></td>
</tr>
<tr>
<td>Test Mode : On</td>
<td></td>
</tr>
</tbody>
</table>

| Frequency Range : 80-1000MHz |
|---|---|---|
| Steps | 1 % | |
| Horizontal | Vertical | Result |
| Front | A | A | Passed |
| Right | A | A | Passed |
| Rear | A | A | Passed |
| Left | A | A | Passed |
9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

9.1 Block Diagram of EUT Test Setup

\[\text{EUT} \rightarrow \text{EFT/B Tester} \rightarrow \text{AC mains}\]

9.2 Test Standard

EN 55024:2010, EN 61000-4-4:2012

9.3 Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Open Circuit Output Test Voltage ± 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On power ports</td>
</tr>
<tr>
<td>1.</td>
<td>0.5KV</td>
</tr>
<tr>
<td>2.</td>
<td>1KV</td>
</tr>
<tr>
<td>3.</td>
<td>2KV</td>
</tr>
<tr>
<td>4.</td>
<td>4KV</td>
</tr>
<tr>
<td>X.</td>
<td>Special</td>
</tr>
</tbody>
</table>

Performance criterion: B

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.
9.4 EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55024:2010, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.
Please refer to Section 3.4.

9.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.6 except the test setup replaced by Section 9.1.

9.6 Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

9.6.1. For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

9.6.2. For signal lines and control lines ports:

It’s unnecessary to measure.

9.6.3. For AC input and DC output power ports:

For DC ports .It’s unnecessary to measure

9.7 Test Results

N/A
10. SURGE TEST

10.1 Block Diagram of EUT Test Setup

![Block Diagram](image)

10.2 Test Standard

EN 55024:2010, EN61000-4-5:2006

10.3 Severity Levels and Performance Criterion

<table>
<thead>
<tr>
<th>Severity Level</th>
<th>Open-Circuit Test Voltage (KV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.5</td>
</tr>
<tr>
<td>2.</td>
<td>1.0</td>
</tr>
<tr>
<td>3.</td>
<td>2.0</td>
</tr>
<tr>
<td>4.</td>
<td>4.0</td>
</tr>
<tr>
<td>X.</td>
<td>Special</td>
</tr>
</tbody>
</table>

Performance criterion: B

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

10.4 EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55024:2010, EN61000-4-5:2006, requirement and
operating in a manner which tends to maximize its emission characteristics in a normal application

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

10.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.7 except the test setup replaced by Section 10.1.

10.6 Test Procedure

1) Set up the EUT and test generator as shown on section 10.1
2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
4) Different phase angles are done individually.
5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

10.7 Test Result

N/A
11. INJECTED CURRENTS SUSCEPTIBILITY TEST

11.1 Block Diagram of EUT Test Setup

11.1.1. Block Diagram of EUT Test Setup

11.1.2. Block Diagram of Test Setup

11.2 Test Standard

EN 55024:2010, EN61000-4-6:2014

11.3 Severity Levels and Performance Criterion

Severity Level 2: 3V (rms), 150KHz ~ 80MHz

<table>
<thead>
<tr>
<th>Level</th>
<th>Field Strength V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
</tr>
<tr>
<td>X.</td>
<td>Special</td>
</tr>
</tbody>
</table>
Performance criterion: A

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

11.4 EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.8.

11.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.8 except the test set up replaced as Section 11.1.

11.6 Test Procedure

1) Set up the EUT, CDN and test generator as shown on section 11.1

2) Let EUT work in test mode and measure.

3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).

4) The disturbance signal described below is injected to EUT through CDN.

5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.

6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave
7) The rate of sweep shall not exceed 1.5×10^{-3} decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.

8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7 Test Result

N/A
12. MAGNETIC FIELD IMMUNITY TEST

12.1 Block Diagram of Test Setup

12.1.1 Block Diagram of the EUT

```
EUT          AC Mains
```

12.1.2 Block Diagram of Test Setup

```
Induction Coil

EUT

Magnetic Field Tester

AC Mains

Wood

Ground Reference Support
```

12.2 Test Standard

EN 55024:2010, EN61000-4-8:2010
Severity Level 1 at 1A/m

12.3 Severity Levels and Performance Criterion

12.3.1 Severity level

<table>
<thead>
<tr>
<th>Level</th>
<th>Magnetic Field Strength A/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
</tr>
<tr>
<td>4.</td>
<td>30</td>
</tr>
<tr>
<td>5.</td>
<td>100</td>
</tr>
<tr>
<td>X.</td>
<td>Special</td>
</tr>
</tbody>
</table>
12.3.2 Performance criterion: B

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

12.4 EUT Configuration on Test

The configuration of EUT is listed in Section 2.9.

12.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.9 except the test set up replaced as Section 12.1.

12.6 Test Procedure

The EUT shall be subjected to the test magnetic field by using the induction coil of standard dimensions (1m*1m) and shown in Section 10.1. The induction coil shall then be rotated by 90° in order to expose the EUT to the test field with different orientations.

12.7 Test Results

N/A
13. VOLTAGE DIPS AND INTERRUPTIONS TEST

13.1 Block Diagram of EUT Test Setup

![Block Diagram]

13.2 Test Standard

EN 55024:2010, EN61000-4-11:2004

13.3 Severity Levels and Performance Criterion

Severity Level:
Input and Output AC Power Ports.
- Voltage Dips.
- Voltage Interruptions.

<table>
<thead>
<tr>
<th>Environmental Phenomena</th>
<th>Test Specification</th>
<th>Units</th>
<th>Performance Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Dips</td>
<td>>95 0.5</td>
<td>% Reduction period</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>30 25</td>
<td>% Reduction period</td>
<td>C</td>
</tr>
<tr>
<td>Voltage Interruptions</td>
<td>>95 250</td>
<td>% Reduction period</td>
<td>C</td>
</tr>
</tbody>
</table>

Performance criterion: B, C, C

A. The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used
as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed.

C. Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

13.4 EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.10.

13.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.10 except the test set up replaced as Section 13.1.

13.6 Test Procedure

1) Set up the EUT and test generator as shown on section 13.1
2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
3) After each test a full functional check is performed before the next test.
4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
5) Record any degradation of performance.

13.7 Test Result

N/A
14. EUT PHOTOGRAPHS

EUT Photo 1

![EUT Photo 1](image1)

EUT Photo 2

![EUT Photo 2](image2)
EUT Photo 5

EUT Photo 6
15. EUT TEST PHOTOGRAPHS

※※※※※ END OF REPORT ※※※※※